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1. Prologue

I thank Matsuyama University for the network accessibility from the
early Internet era, especially not only for teachers but also for all students
who want to have access to the Internet. They can enjoy the web resources
very much depending on their interest and their ability of handling a
computer. Although now the university’s programming course is less
weighted in the curriculum.

But I still have to insist that programming experiences is very impor-
tant for any people to use a computer even if they use computer just for
writing reports or calculating some accounts after for their rest of the life.

Think, simply think sitting before a computer and browsing Web pages
as a novice computer user. A browser will be used for the purpose. You

may wonder how the browser display the pages on the screen of your
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‘computer. It depends on the program that how it render the HTML text
which get from a Web server.

| So as to show you writing a short program is not so difficult for any
computer user who have enough knowledge about the domain where he/she
is Williﬁg to do some tasks and not so difficult to understand the program,
I will show some code example (figure. 1) written in Python (http: //www.
python. org) which get the raw HTML from a Web server and print the
results. This program code uses Python httplib module.

Figure 1 A python httplib code fragment but it works for getting a raw
HTML from a Web.}

import httplib

h = httplib. HTTP (www’)

h. putrequest (GET’, ’/index. html’)

h. putheader CAccept’, 'text/html’)

h. putheader CAccept’, 'text/plain’)

h. endheaders ( )

errcode, errmsg, headers = h. getreply ( )
f = h. getfile ()

data = f.read ( ) # Get the raw HTML
f.close ()

print data

A Web browser program start from this point that to get the raw
HTML. Any program which seems to do some complex task start from
such a simple code fragment and as Eric S. Raymond said in “The Cathedral

and the Bazaar’ that it’s almost easier to start from a good partial solution
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than from nothing at all. Raymond founded an idea of open-source that
depends on some theories about software engineering suggested by the
history of Linux.

As a programmer, I write program. My occupation and programming
experience started on old UNIVAC 1100 machines. Quoting some codes
which I wrote and referred to I would like to present programming is how

cute in some way for you.
2. Euclid’s algorithm and two way programming style

As D. E. Knuth states in his famous text book “The Art of Computer
Programming volume 17, basis of all of computer programming is “Algor-
ithm”. The word algorithm starts from Euclid’s algorithm, a process to
find the GCD (greatest common divisor) of two positive integers.

Euclid’s algorithm is:

(1) Divide X by Y and let R be the remainder.

(2) IF R=0, the algorithm terminates; X is the answer.
(3)Set Yto X, RtoY, and go to (1).

The algorithm consists of 3 steps, it starts from step (1). Each step of
the algorithm do simple arithmetical calculation and after some arithmeti-
cal decision go to the specified step. The control goes to next step if “go
to” or “terminate” is not specified.

Above Euclid’s algorithm does not exhibit same as described in original
Euclid’s book but this somehow formalized description comes from the
procedural computation form. This is one formalism of computation. On
python programming language system, we can write the following program

which represents Euclid’s algorithm.
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Figure 2 A prthon program for Euclid’s algorithm
r=x%y
Whiler I= 0:
L,Yy=YVI;,T=X%YV
print x |
This is a procedural program presented on the imperative computation
model. The imperative computation model stands on von Neumann
machine architecture. We can show another program which comes from
another corﬁputation model. |
According to a formal system defined by Herbrand-Godel-Kleene
(HGK), we can define GCD as a set of equations on natural numbers. The
HGK system is some type of functional programming system which uses

substitutions and deductions formalized by Kleene.

Figure 3 A GCD program for the Herbrand-Gédel-Kleene formal system
Equation 1. ged(X, 0) =X
Equation 2. gcd (X, Y) =gcd (Y, remainder (X, Y))

In equation 2, remainder (X, Y)is used as an already defined function
for HGK to calculate the remainder after dividing X by Y. For the
calculation of GCD (X, Y), we will define a functional (or schema) G for
HGK as follows::

G (ged, X, Y) =if Y=0 the X else G (ged, Y, remainder (X, Y))

The functional G (ged, X, Y)is an auXiliary function.

A GCD program for HGK will be presented for ‘Lisp’ using the func-
tional G (GCD, X, Y)as g (f x y) in figure 4 lisp program. Specifically, the
function ‘g’ is defined using ‘g’ itself as a first argument. Self-application

likeness is allowed in Lisp programming language.




A Programmer’s View of Trusting Programs on Pure Mathematics 57

Figure 4 A lisp program fbr GCD
(defun ged (x y)
(g (function g) x y))
(defun g (f x y)
(cond ((zerop v) x)

(t(g fy(rem x y))))

Lisp is a functional programming language. In an imperative language
like Python the quesﬁon is “In order to do something what operations must
be carried out, an in what order ?”. In functional programming language
the question is “How can this function be defined ?”. Above Lisp program
defines the function GCD. In Lisp functiens are partial recursive functions.

“Partial” means in some case they may not have a value.
3. Code as a mapping domain

Everybody including computer beginner to advanced computer user
must use a keyboard as a communication device for computers. Roughly
speaking, our idea to be executed on computer should be described as
strings in some set of symbols at last. The computing mechanism of von
Neumann machines come from Turing machines. Turing machines are
some kind of machines each which is designed to reproduce all sorts of
operations which a human could do. For any function which is effectively
calculable, a Turing machine can be found which computes it. This is
formulated as Turing’s thesis (received for publication 28 May 1936) that
every function which would be naturally be regarded as computable is
computable under one of his machines. |

In a mathematical theory, formalization of a theory did an important
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role particularly. Ancient mathematician Pythagoras and Euclid discover-
ed the axiomatic deductive method in mathematics. At the beginning of
20th century, Hilbert emphasized that strict formalization of a mathemati-
cal theory called formal system or formal theory. His method of making
the formal system is called metamathematics which treat as a whole of
object of a mathematical study.

We define two terms, “objekct theory” and “metatheory” in a particular
formal theory. An object theory relates to the system itself and a metath-
eory relates to the metamathematics relating to the formal theory. We
suppose L as an object theory and M for a metatheory. Also we can call
L as the object Ianguage and M as a meta languagef

Proofs in L are formalized in M according to the methods invented by
Godel. It starts from the arithmetization of metamathematics or
metamathematics as a generalized arithmetic. It was illustrated in the
theorem “on formally undecidable propositions of Prihcipia Mathematica
and related systems” by Godel.

All objects in a formal system is represented by strings of finite length.
So the formal objects are enumerable. Therefore the Whoie of the objects
in L has one to one correspondence to the whole natural numbers set N, and
we can formulate as

G:L—N, x— [x]

Where x is any object in L and [ x| & N is a Godel number of the object
x. We can define that G is a primitive recursive function and object x is
decodable from [x|. According to G, embedding the formal theory into
the number theory, the arithmetization of metamathematics is done. The
concept of a Godel numbering is a natural way of expression for computer

programmers who are familiar to express objects as bits strings (are natural
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number). I also believe that von Neumann invented the computer architec-
ture from this Godel numbering idea.

The arithmetization of metamathematics succeeded in discussing the
idea dealing with meta or higher order concept. By an introduction of the
arithmetization of metamathematics, we can deal the meta concept and the
original concept at the same level.

Some famous paradoxes were founded at the beginning of 20th century.

A © non-A (Richard paradox 1905)
X € x © x €x (Russell paradox 1902-3)

The Richard paradox deals with the notion of finite definability. He
gave the paradox in a form relating to a real number and a more popularly
stated one in English is “the least natural number not nameable in fewer
than twenty-two syllables”. This expression names in twenty-one sylla-

bles a natural number which by definition cannot be named in fewer than
| twenty-two syllables. Therefore, it is a paradox.

Another famous paradox called the Russel paradox exists which comes
from Cantor’s set theory. The paradox deals with the set of all sets are not
members of themselves. A popularizatibn of the paradox concerns the
barber in a village, who shaves all and only those persons in the village who
do not shave themselves. Does he shave himself ?

Generally speaking, applying a function to itself f (f)is called “self
—application”. We will show some paradox occurs in the self-application
world. We assume that V is a set which contains at least two element and

Forallf, xeV=2fx) eV
When we defined a function paradox& V as follows:
paradox (f) = if f (f) =g then h else g

where h and g are different functions in V.
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If we make an self-application for the function paradox&V, we have
paradox (paradox) = g iff paradox (paradox) = h

where iff means that if and only if.

But we made the assumption that g + h, so this is a case of Russel
paradox. Therefore, we have a Russel paradox in the world where func-
tional self-application is allowed.

As we have already described, the computing mechanism of von
Neumann machine comes from Turing machines. The storage of machine
holds the binary data and instructions which are functions they transform
input data to output data, and they are represented as binary strings.
There are no differences between data and program those are stored in the
memory of computer in a point of view that they are represented as binary
digits strings. When those binary strings are interpreted as sequences of
instructions, they work as functions which transforms binary digits strings
in the memory of computer.

We suppose M is set of the memory states and B is set of the bit strings
in the computer. A function “contents” maps M to B:

contents: M — B.

For m & M and b € B, the function bits transforms m to b defined as
b =contents (m). Set of instructions in the memory of computer is defined
as follows:

instruction: (M — B) — (M — B).

If contents (m) is an instruction, the instruction contents (m) is a func-
tion which maps current state “contents” to the next state after the execu-
t'ion of the instruction which is represented as:

contents (m) (contents).

Since the function contents do self application.
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4. The meta language ML and recursive functions

The meta language ML comes from LCF and Milner’s polymorphic type
system. A useful information resource about the ML includes how to get
ML compilers is in the FAQ (http: //www. cis. ohio-state. edu/hypertext/
fag/usenet/meta-lang-faq/faqg. html). The formal logic of LCF is a blend
of the predicate calculus with equality and the lambda calculus. It was
based upon Dana Scott’s theory of domains of continuous functions, and is
particularly suited to the formulation and proof of properties of algorithm
and algorithmic languages. ML applies to the whole area of symbolic
computation and list processing is like Lisp. ML supports the functional
programming including higher order functions and moreover its supports
imperative programming.
A factorial program “fact” for ML is as follows:
—fun fact 0 =1
= | fact n = n*xfact (n—1);
val fact = fn: int —> int
At the last line ML do an inference that fact is a function which maps
integer to integer. Next example is a definition of higher order function
“map” applies fact function to each element of a list.
—fun map (f, 1) =
= if 1 = nil then nil
= else f(hd 1): : map (£, (tl 1));
val map = fn: (a — > ’b) %’a list — > ’b list
—map (fact, [1, 2, 3, 4, 5] );
valit = [1, 2, 6, 24, 120] : int list
Like a Lisp program using functional G (gcd, X, Y), GCD program in
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ML version is as follows.

—fung(f, x, 0) =x

=| g, x, ) =g y, x mod y);

val g = fn:’a % int % int —> int

—fun ged (%, y) = g (ged, X, ¥);

val gcd = fn: int % int — > int

—gcd (16107, 8437);

val it = 767 : int

The function twice
(twice (f)) (x) = £ (f (x))

works almost like self-application function is given in ML as follows. Is
applies f twice to x.

—fun twice f x = f (f (X)) ; |

val twice = fn: (a —>’a) —>'a —> 'a

In ML, ’a means a general type in place of the specific type such as int

or string. Since the function twice has type (any type —> any type) —>
(any type — > any type). In the real ML, the type of twice is returned as
fn: (a —>’a)—>’a —>"’a, but it means(a —>’a) —> (a — > ’a)
because the arrow is right associative. The twice is a function which takes
a type(any type —> any type)function and returns a function (any
type — > any type). We will apply the function twice to a function square
| which square the integer and see the results.
—fun square x = X % X;
val square = fn: int — > int

The function twice for square is tested in ML as follows.
—square 2 ;

valit = 4: int
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—twice square 2 ;

val it = 16: int

—twice twice square 2 ;
val it = 65536 : int

Twice twice is a functional that applies its arguments four times. But
this is not really self application in the meta language ML. We will explain
why the twice in ML is not a self-application program. We have to start
from a expression Ax.t where x and t are‘ variables and is called lambda
expression. Lambda expression is composed of constants, variables,
abstractions, and combinations, they are sometimes called A-term. The
syntax of the A-calculus is simple. Lambda abstraction is the form (ix. t)
and combination is (t u) which means application of t to the argument u.
The lambda expression Ax.t can be regarded as a function in ordinary
mathematics. Lambda abstraction allows us to express a function as (1x.
ax®+bx?+c) without giving a name to it. In an ordinary mathematical
expression, we write it as f (x) = ax®+bx?*+c¢ and give a name f to the
function as follows :

f: x— ax®*+bx?+c.

To avoid giving a name, A is used as an auxiliary symbol by Church and

he wrote ‘
f = Ax. ax®*+bx?+c.

But it cause to be involved in higher order functions and semantic
questions occurs which we will show later. To explain the reason why the
twice in ML is not self application, we will define twice in the A-calculus.
In the A-calculus, twice is defined by a lambda expression twice = Af x. f (f
(x)). The test of twice in ML is checked by 8-conversion in the A-calculus :

(Af x. f (f (x))) square 2 = (Ax. square (square (x))) 2
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= square (square ( 2))
= 16
Because twice f x = { (f (x)) for terms f, x, the expression twice twice
square 2 is
twice twice square 2 = twice (twice square) 2
= twice square (twice square 2)
= twice square (square (square ( 2 )))
= square (square (square (square (2))))
= 65536.

For the test of twice, we have the same result in the A-calculus as in the
meta language ML. But we know the function twice is applied to itself.
The function twice in ML has type such as:

twice : integer > integer.

In twice twice, the first twice and the second twice have different type.
The second twice has twice (integer — integer) — (integer — integer). The
first occurrence of twice has type ((integer — integer) — (integer — integer))
— ((integer (integer) — (integer — integer)). The first twice and the second

twice have different types. Since the different occurrence of twice takes

different terms, it is not really self application in ML.
5. Recursive function and Y for ML

The function twice can be applied to itself. Since it is not a conven-
tional function. Let see that a function f (Xx) =y maps an element x of a set
[x] to an element of a set [y]. For the function twice f x = £ (f (x)), twice
is a set of all pairs (twice, y) such that twice (twice) = y. Thus twice is an
element of [twice] for some y and it violates the axiom that no set can

belong to itself.
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Since self application causes Russell’s paradox, the formal set theory
excludes the self application. But we described that the computational
model of von Neumann machine coﬁtains self application of the function
contents in the last section. The computer program is viewed as rules
which transforms input to output. A-calculus is resembles to the program
because it views functions as rules.

Until now we referred A-calculus as untyped (type free) A-calculus
where the terms are untyped. The terms in the theory A denoted by the
untyped A-calculus are build up from variables and abstraction.

Consider the factorial function again as the following recursive defini-
tion :

FACT = in. IF (= n0) 1 (#n (FACT (—n1)))

Where IF is a conditional function whose behavior is defined by the
following reductions :

IFTRUEPR - P

IF FALSEPR — R. .

If n = 0 then this definition gives a value n%... % 2% 1 for FACT (n).
If n < 0 then the evaluation of FACT (n) will not stop. Above recﬁrsive
definition can be expressed as follows focusing on the recursive structure.

FACT = in. (...FACT..)
By performing g-abstraction on FACT, it becomes as:
FACT = Aact. (An.(...fact...)) FACT |
This is represented as:
FACT = H FACT
Where
H = Afact. (An. (... fact...))
FACT = H FACT means that when the function H is applied to FACT,
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the result is FACT. FACT is said as a fixed point of H. When H is

viewed as a operator, FACT is a fixed point of the operator H. Another

example of a fixed point for the recursive function GCD is represented as :
GCD = G GCD

Where GCD is a fixed point of the function G. A function may have
more than one fixed point. To seek a fixed point of H, we introduce a
function Y which takes a function and gives a fixed of the function as its
result. Thus for the fixed point of H, Y behaves as follows:

Y H = H (Y H)

By assuming Y hold above equation, we can give a non-recursive

definition of FACT, namely
FACT=YH
H = Afact. (An.IF (=n 0) 1 (% n (fact (—n 1)))).
Above equation shows that the recursive definition of FACT is turned
into a non-recursive definition a functional H.
H (g) (n) = Afact. (An. IF (=n 0) 1 (%kn (fact (—n 1)))) (g) (n)
As a well known result, Y can be defined as a A abstraction as follows :
Y = A (x.f (x X)) (Ax.  (x x)). |
Tosee Y H = H (Y H), let us evaluate Y H.
YH = (i xf (x x) (Ix.f xx)) H
= (Ax. H(x %)) (A1x. H (x %))
= H (Ax. H(x x)) (x. H (x x)))
= H(Y H)

Third line of above reduction comes from A-conversion. Define
FACT = Y H. Then we have FACT satisfying its recursion equation.
(FACT n) = ((Y H) n)

= ((H (Y H)) n)
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= ((H FACT) n)
= (An. IF (=n 0) 1 (n (FACT (—nl))))
How do I write the Y combinator in ML without using a recursive
definition ? We can give an answer as follows :
datatype’at = Tof’at —> ’a
valy =fnf=> {tn(Tx) => f(fna=>x (T x)a)
(Tn(Tx) => (f(fna=>x(T x)a))

6. Epilbgue

The origin of the programming goes back to the beginning of the 20th
century. In the year 1900, David Hilbert did a famous lecture which is a
call to mathematicians to solve a list of twenty-three difficult problems.
His idea is the culmination of two thousand years of mathematical tradition
going back to Euclid’s axiomatic treatment of geometry, going back to‘
Leibniz’s dream of a symbolic logic and Russell and Whitehead’s monumen-
tal Principia Mathematica. He wanted to formﬁlate a formal axiomatic
system which would encompass all of mathematics.

Mathematical ideas helped programmers to make more trusting pro-
grams. One of those idea was the A-calculus. The A-calculus possesses
some features of programming language such that type free aspect which
corresponds to a program and data are same. Moreover a program can
apply to itself regarding the program as its data, so a program can trans-
form itself. Some programming language feature is also inspired by
A-calculus. Some imperative programming language have a feature that
procedures can be argument of procedures. Functional programming lan-
guage have same feature and moreover procedures can produce procedures

as output. There was a need for expressing the functional meaning of a
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program, denotational semantics of programming languages. As de-
scribed in section 3, the self applicable function twice violates the axiom
of the set theory. With C. Strachey’s work in the denotational semantics
of programming languages, Scott developed a LCF in 1969. The meaning
of expressions in programming languages can be taken as elements of
certain spaces of ‘partial’ objects. Scott had shown that these spaces are
modeled in one universal domain P-omega, the set of all subsets of the
integers. This domain renders the connection of this semantic theory with
the ordinary theory of number theoretic functions clear and straight-

forward.
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